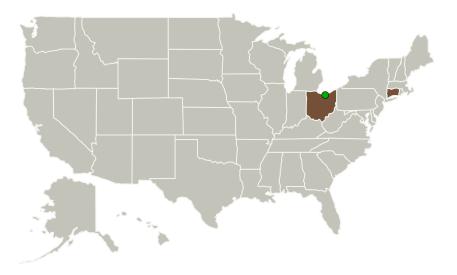
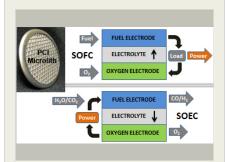
Highly Efficient, Durable Regenerative Solid Oxide Stack, Phase I



Completed Technology Project (2017 - 2017)


Project Introduction

Precision Combustion, Inc. (PCI) proposes to develop a highly efficient regenerative solid oxide stack design. Novel structural elements allow direct internal reforming of regolith off-gases (e.g., methane and high hydrocarbons) within a solid oxide stack as well as efficient H2O/CO2 electrolysis, overcoming shortcomings of traditional approaches. The resulting enhanced heat transfer design offers the potential for light-weight and simple design with high efficiency and durability. This effort would be valuable to NASA as it would significantly reduce the known spacecraft technical risks and increase mission capability/durability/efficiency while at the same time increasing the TRL of the solid oxide systems for ISRU application. Technology concept of highly-efficient regenerative Solid Oxide Stack will be demonstrated in Phase I with a clear path towards Phase II breadboard demonstration.

Primary U.S. Work Locations and Key Partners

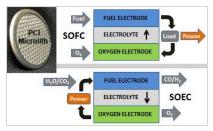
Organizations Performing Work	Role	Туре	Location
Precision	Lead	Industry	North Haven,
Combustion, Inc.	Organization		Connecticut
Glenn Research Center(GRC)	Supporting	NASA	Cleveland,
	Organization	Center	Ohio

Highly Efficient, Durable Regenerative Solid Oxide Stack, Phase I Briefing Chart Image

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	
Images	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	2
Technology Areas	3

Small Business Innovation Research/Small Business Tech Transfer


Highly Efficient, Durable Regenerative Solid Oxide Stack, Phase I

Completed Technology Project (2017 - 2017)

Primary U.S. Work Locations		
Connecticut	Ohio	

Images

Briefing Chart Image

Highly Efficient, Durable Regenerative Solid Oxide Stack, Phase I Briefing Chart Image (https://techport.nasa.gov/imag e/128019)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Precision Combustion, Inc.

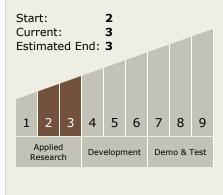
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Saurabh Vilekar

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Highly Efficient, Durable Regenerative Solid Oxide Stack, Phase I

Completed Technology Project (2017 - 2017)

Technology Areas

Primary:

- - Electrochemical: Fuel Cells

